
Surviving Cyrus SASL

A Tutorial by
Patrick Koetter & Ralf Hildebrandt

at the Linuxforum 2007
in Kopenhagen, Denmark

The Goal

4© Patrick Koetter & Ralf Hildebrandt, 2007

Mailserver

LDAP-Server

Mailclient

SMTP-Server IMAP-Server

send

store

receive

Search recipient address

Verify sender Verify recipient

Architecture

6© Patrick Koetter & Ralf Hildebrandt, 2007

Components

OpenLDAP

???

Postfix Cyrus IMAP

7© Patrick Koetter & Ralf Hildebrandt, 2007

Protocols

LDAP-Server

Mailclient

SMTP-Server IMAP-Server

ESMTP

LMTP

IMAP

LDAP

LDAP LDAP

8© Patrick Koetter & Ralf Hildebrandt, 2007

Areas of Authentication

LDAP-Server

Mailclient

SMTP-Server IMAP-Server

PLAIN, LOGIN,
CRAM-MD5, DIGEST-MD5

PLAIN, LOGIN,
CRAM-MD5, DIGEST-MD5

PLAIN, LOGIN,
CRAM-MD5, DIGEST-MD5PLAIN, LOGIN,

CRAM-MD5, DIGEST-MD5

ldapdb-Plugin.
DIGEST-MD5

ldapdb-Plugin.
DIGEST-MD5

libsasl (server) libsasl (server)

libsasl (client)

libsasl (server)

libsasl (client) libsasl (server)

libsasl (server)

Cyrus SASL

10© Patrick Koetter & Ralf Hildebrandt, 2007

What is Cyrus SASL?
Cyrus SASL is
– an authentication-framework
– an implementation of SASL, the „Simple Authentication and Security Layer“
– standardised
– described in RFC 2222
– „the child of those sitting on the standard“

Application Range
– Cyrus SASL does not act on its own.
– Embedded into an connection-oriented application (e.g. SMTP, FTP, POP3, IMAP, LDAP)

Cyrus SASL provides a protocol, which
„(...) includes a command for identifying and authenticating a user
to a server and for optionally negotiating protection of subsequent
protocol interactions. If its use is negotiated, a security layer
is inserted between the protocol and the connection.“

http://ftp.rfc-editor.org/in-notes/rfc2222.txt

11© Patrick Koetter & Ralf Hildebrandt, 2007

Advantages
Integrating Cyrus SASL in an application,

– simplifies software development
– provides stable and reliable functionality
– increases interoperability with other RFC compliant software

Disadvantages
Using Cyrus SASL in an application,

– drives users nuts, because the existing documentation focuses on developers
– may not get you far, because many things are undocumented
– is hard to memorize, because everything is handled differently

12© Patrick Koetter & Ralf Hildebrandt, 2007

How Cyrus SASL works
– Cyrus SASL provides the libsasl library to developers
– Developers link the library into their application
– Mode, client- or server-mode, determines what libsasl will do for the application

13© Patrick Koetter & Ralf Hildebrandt, 2007

Tasks
– determine which mechanism the client must use during authentication
– process the tasks required by the mechanism

libsasl in Client-Application

ServerClient

SASLlibsasl

hostname user:pass
hostname user:pass
hostname user:pass

Mechanisms

14© Patrick Koetter & Ralf Hildebrandt, 2007

libsasl in Server-Application

Tasks
– identify a list of mechanisms the server may offer
– process the tasks required by a chosen mechanism
– hand over authentication data to a password verification service
– notify server of authentication result

ServerClient

libsaslSASL

server.conf
Service
Options

Password
Verification

Service

Authentication
Backend

Method

Mechanisms

15© Patrick Koetter & Ralf Hildebrandt, 2007

SASL-Terms used in authentication
– Client and server use an authentication interface to communicate
– They use mechanisms to exchange authentication data
– A password verification service or a method verify data in an authentication backend
– The server sends the authentication result to the client
– The server may authorize the client to take some action

16© Patrick Koetter & Ralf Hildebrandt, 2007

Authentication Interface
Authentication Interface is the place where client and server meet to exchange authenticati-
on data and information.

– The application protocol defines client-server communication
– SASL is a framework for many applications. It must be free from application-specific pro-

tocol requirements
– Application protocols must specify client- and server-commands to carry out authentica-

tion
– libsasl is the glue for application-specific commands and universal SASL-routines

17© Patrick Koetter & Ralf Hildebrandt, 2007

Mechanisms
Mechanisms define strategies for sending authentication data.

„SASL mechanism names must be registered with the IANA.“

Groups of Mechanisms
Similar characteristics serve to group mechanisms:

– Plaintext-mechanisms
– Shared-Secret-mechanisms
– Ticket-mechanisms
– External-mechanisms

Group Characteristics
– Processing

How is authentication processed?
– Data

Which data are send during authentication?
– Security

Which level of security can be achieved from the various processing — data combinations?

http://www.iana.org/assignments/sasl-mechanisms

18© Patrick Koetter & Ralf Hildebrandt, 2007

Plaintext-mechanisms
Procedure
Mechanism encodes authentication data base64 (some transports are not 8-bit clean).

Data
Plaintext-mechanisms send username, password and (maybe) realm.

Security
– Transport is unencrypted

Transport layer may be encrypted using TLS.
– Authentication data must be stored on the server.

Available mechanisms
– PLAIN
– LOGIN

19© Patrick Koetter & Ralf Hildebrandt, 2007

PLAIN
authcid, authzid and password will be base64-encoded and sent as one string

perl -MMIME::Base64 -e ‚print encode_base64(„username\0username\
 0password“);‘
dXNlcm5hbWUAdXNlcm5hbWUAcGFzc3dvcmQ=

Beispiel (SMTP)
220 mail.example.com ESMTP Postfix
EHLO example.com
250-mail.example.com
250-PIPELINING
250-SIZE 10240000
250-AUTH DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-AUTH=DIGEST-MD5 CRAM-MD5 GSSAPI PLAIN LOGIN
250-XVERP
250 8BITMIME
AUTH PLAIN dXNlcm5hbWUAdXNlcm5hbWUAcGFzc3dvcmQ=
235 Authentication successful
QUIT
221 Bye

20© Patrick Koetter & Ralf Hildebrandt, 2007

LOGIN
Username, password and optionally the domainname will be base64-encoded separately
and also sent separately.

LOGIN is a proprietary Microsoft mechanism. It is not standardised and documentation is
not freely available.

Outlook und Outlook Express can‘t do PLAIN, but they can do LOGIN.

Beispiel (SMTP)
220 smtp.example.com ESMTP server ready
EHLO test.example.com
250-smtp.example.com
250-STARTTLS
250 AUTH LOGIN CRAM-MD5
AUTH LOGIN
334 VXNlciBOYW1lAA== # User Name
dGlt # Tim
334 UGFzc3dvcmQA # Password
dGFuc3RhYWZ0YW5zdGFhZg== # tanstaaftanstaaf
235 Authentication successful.

21© Patrick Koetter & Ralf Hildebrandt, 2007

Shared-Secret-mechanisms
Procedure
Shared-Secret-mechanisms are Challenge-Response methods.

The server produces a challenge. The client can only solve (response) it, if it uses identical
authentication data.

Data
– Username and challenge are encrypted using the password.
– The complete string will be sent base64-encoded.
– The password is never sent.

Security
– Data is transported encoded and encrypted
– Authentication data must be stored on the server
– The password must be stored in plaintext format

Available Mechanisms
– CRAM-MD5
– DIGEST-MD5
– NTLM

22© Patrick Koetter & Ralf Hildebrandt, 2007

External-mechanisms
EXTERNAL relies on external mechanisms that are not part of SASL

„The server uses information, external to SASL, to determine whe-
ther the client is authorized to authenticate as the authorizati-
on identity. If the client is so authorized, the server indicates
successful completion of the authentication exchange; otherwise the
server indicates failure.“

TLS
TLS is the only EXTERNAL-mechanism met „in the wild“.

– TLS offers client- and server-authentication using certificates.
– TLS encrypts the transport layer.

23© Patrick Koetter & Ralf Hildebrandt, 2007

Ticket-mechanisms
Procedure
– Client authenticates with Kerberos-server and receives a ticket granting ticket.
– The ticket granting ticket enables the client to request a ticket that grants usage of a ser-

vice.

Data
– Client sends username and password to Kerberos-server.
– Client sends only ticket granting ticket to gain access to service.

Security
– Neither username nor password are sent during SASL authentication.

Available Mechanisms
– Kerberos_4

(vulnerable, don‘ t use it)
– GSSAPI (Kerberos_5)

„the“ secure mechanism

24© Patrick Koetter & Ralf Hildebrandt, 2007

Password Verification Service
Password Verification Services verify authentication data on behalf of libsasl.

Advantages
– run as standalone daemons on the server
– may be run with special privileges (while the server application uses least privileges)
– may access authentication backends requiring special privileges

Disadvantages
– can only handle „insecure“ plaintext-mechanisms

Available Password Verification Services
– pwcheck
– saslauthd

25© Patrick Koetter & Ralf Hildebrandt, 2007

pwcheck
– pwcheck is the old, original Cyrus SASL Password Verification Service
– was used until end of Cyrus SASL 1.5.xx series
– is still part of the Cyrus SASL source tree
– pwcheck is deprecated

26© Patrick Koetter & Ralf Hildebrandt, 2007

saslauthd
saslauthd is the official, current Cyrus SASL Password Verification Service.

It can access various authentication backends:

saslauthd -v
saslauthd 2.1.19
authentication mechanisms: getpwent kerberos5 pam rimap shadow ldap

– getpwent
Access passwd

– kerberos5
Authenticate against local Kerberos realm

– pam
Send request to Pluggable Authentication Modules (PAM) and use result

– rimap
Attempt login to remote IMAP-server.

– shadow
Access shadow-file.

– ldap
Authenticate (simple bind) with LDAP-server

27© Patrick Koetter & Ralf Hildebrandt, 2007

Auxiliary Property Plugins
Auxiliary property plugins verify authentication data on behalf of libsasl (and they may do
more...).

Advantages
– may access a variety of authentication backends
– may also write (create, modify) to authentication backends
– can do proxy authentication
– may use all available mechanism groups

Disadvantages
– cannot access authentication backends that require privileges beyond the server they are

executed from

Available Auxiliary Property Plugins
– sasldb
– sql
– ldapdb

28© Patrick Koetter & Ralf Hildebrandt, 2007

sasldb
sasldb is the Cyrus SASL standard authentication backend

– sasldb is a Berkeley DB
– sasldb database format was changed from Cyrus SASL version 1.x to 2.x. to make offering

Shared-Secret mechanisms possible
– since Cyrus SASL 2.x passwords are stored in sasldb as plaintext.

Utilities
– saslpasswd2

– Create sasldb2

– Create accounts in sasldb2

– Modify accounts in sasldb2
– sasldblistusers2

List sasldb2-users

29© Patrick Koetter & Ralf Hildebrandt, 2007

sql
sql is a generic driver to access various SQL-servers

– MySQL
– PostgreSQL
– SQLite

Typical Problems
Accessing the SQL-server via PAM, in order to store passwords encrypted. The same people
don‘t seem to mind sending username and password unencrypted over the wire...

The „frost“-patch „fixes“ unencrypted storage in the SQL-server at the price of losing shared-
secret mechanisms.

30© Patrick Koetter & Ralf Hildebrandt, 2007

ldapdb
ldapdb is a driver to access the OpenLDAP server.

The driver implements proxy authentication as described in RFC 2222:

„The separation of the authorization identity from the identity in
the client‘s credentials. This permits agents such as proxy servers
to authenticate using their own credentials, yet request the access
privileges of the identity for which they are proxying.“

ldapdb requires configuring Cyrus SASL authentication two times:

– Login of Cyrus SASL ldapdb-Plugin to slapd
– Usage of ldapdb-Plugin within server application

Configuration

32© Patrick Koetter & Ralf Hildebrandt, 2007

What needs to be configured?
Client
– only needs the credentials
– The client (not SASL) may want to avoid certain mechanisms

Server
Server applications must be configured before Cyrus SASL serves them. A server application
sends two values to libsasl

– application_name
application_name specifies part of the string used to identify the server-specific con-
figuration file

– service_name
service_name specifies the service (protocol) libsasl serves. PAM uses the service
name to identify the service-specific configuration file.

33© Patrick Koetter & Ralf Hildebrandt, 2007

Parameters
Cyrus SASL knows generic and method-specific parameters.

Parameters that are specific to a method must be specified

– on the command line when a password verification service is used
– in an application_name.conf when auxprop-plugins are used

34© Patrick Koetter & Ralf Hildebrandt, 2007

Generic Parameters
log_level

log_level controls the level of verbosity of messages sent to the syslogd service.

Level Verbosity
0 no messages
1 unusual errors
2 all authentication errors
3 log non-fatal warnings
4 more verbose than 3
5 more verbose than 4
6 traces of internal protocols
7 traces of internal protocols, including pass-

words

Logging is inconsistent
No password verification service or auxprop-plugin implements all log levels. Some don‘t log
at all...

35© Patrick Koetter & Ralf Hildebrandt, 2007

pwcheck_method

Specifies one or more password verification services and/or auxprop-plugins to process au-
thentication.

Valid values are the names of the password verification services or auxprop-plugins.

mech_list

Specifies a list of mechanisms a Cyrus SASL may offer a server.

Valid values are the names of mechanisms, separated by whitespace.

36© Patrick Koetter & Ralf Hildebrandt, 2007

Method-spezific Parameters
... hold on. We‘ll take a look at them when practice...

Testing

38© Patrick Koetter & Ralf Hildebrandt, 2007

Tools to test
Testing Cyrus SASL isolated is important! Without you‘ll have a hard time to tell if the error
is in Cyrus SASL or the server that offers authentication.

Many admins spend days looking for the error in their application...

Problem
Cyrus SASL has no „tools“ to test!

39© Patrick Koetter & Ralf Hildebrandt, 2007

testsaslauthd
testsaslauthd only tests the password verification service saslauthd.

Problem
Successful testing does not prove all of the Cyrus SASL framework is okay, because
testsaslauthd does not (!) use the Cyrus SASL mechanism libraries...

Command
testsaslauthd
testsaslauthd: usage: testsaslauthd -u username -p password
 [-r realm] [-s servicename]
 [-f socket path] [-R repeatnum]

40© Patrick Koetter & Ralf Hildebrandt, 2007

client — server
Cyrus SASL sources bring sample applications to demonstrate integration for developers.

Surprise!
sample applications are undocumented...

Server
./sample-server -h
lt-sample-server: Usage: lt-sample-server [-b min=N,max=N] [-e ssf=N,id=ID] [-m MECH] [-
f FLAGS] [-i local=IP,remote=IP] [-p PATH] [-d DOM] [-u DOM] [-s NAME]

 -b ... #bits to use for encryption
 min=N minumum #bits to use (1 => integrity)
 max=N maximum #bits to use
 -e ... assume external encryption
 ssf=N external mech provides N bits of encryption
 id=ID external mech provides authentication id ID
 -m MECH force use of MECH for security
 -f ... set security flags
 noplain require security vs. passive attacks
 noactive require security vs. active attacks
 nodict require security vs. passive dictionary attacks
 forwardsec require forward secrecy
 maximum require all security flags
 passcred attempt to receive client credentials
 -i ... set IP addresses (required by some mechs)
 local=IP;PORT set local address to IP, port PORT

41© Patrick Koetter & Ralf Hildebrandt, 2007

 remote=IP;PORT set remote address to IP, port PORT
 -p PATH colon-seperated search path for mechanisms
 -s NAME service name to pass to mechanisms
 -d DOM local server domain
 -u DOM user domain
 -l enable server-send-last

Client
./sample-client -h
lt-sample-client: Usage: lt-sample-client [-b min=N,max=N] [-e ssf=N,id=ID] [-m MECH] [-
f FLAGS] [-i local=IP,remote=IP] [-p PATH] [-s NAME] [-n FQDN] [-u ID] [-a ID]

 -b ... #bits to use for encryption
 min=N minumum #bits to use (1 => integrity)
 max=N maximum #bits to use
 -e ... assume external encryption
 ssf=N external mech provides N bits of encryption
 id=ID external mech provides authentication id ID
 -m MECH force use of MECH for security
 -f ... set security flags
 noplain require security vs. passive attacks
 noactive require security vs. active attacks
 nodict require security vs. passive dictionary attacks
 forwardsec require forward secrecy
 maximum require all security flags
 passcred attempt to pass client credentials
 -i ... set IP addresses (required by some mechs)

42© Patrick Koetter & Ralf Hildebrandt, 2007

 local=IP;PORT set local address to IP, port PORT
 remote=IP;PORT set remote address to IP, port PORT
 -p PATH colon-seperated search path for mechanisms
 -r REALM realm to use -s NAME service name pass to mechanisms
 -n FQDN server fully-qualified domain name
 -u ID user (authorization) id to request
 -a ID id to authenticate as
 -d Disable client-send-first
 -l Enable server-send-last

Practice

44© Patrick Koetter & Ralf Hildebrandt, 2007

shadow authentication
Procedure
– Prepare saslauthd environment
– Create user test
– Test

– using testsaslauthd

– using sample-server und sample-client
– Configure AUTH

– in Postfix

– in Cyrus IMAP

45© Patrick Koetter & Ralf Hildebrandt, 2007

/usr/sbin/saslauthd -h
usage: saslauthd [options]
option information:
 -a <authmech> Selects the authentication mechanism to use.
 -c Enable credential caching.
 -d Debugging (don‘t detach from tty, implies -V)
 -r Combine the realm with the login before passing to
 authentication mechanism Ex. login: „foo“ realm: „bar“
 will get passed as login: „foo@bar“ The realm name is
 passed untouched.
 -O <option> Optional argument to pass to the authentication
 mechanism.
 -l Disable accept() locking. Increases performance, but
 may not be compatible with some operating systems.
 -m <path> Alternate path for the saslauthd working directory,
 must be absolute.
 -n <procs> Number of worker processes to create.
 -s <kilobytes> Size of the credential cache (in kilobytes)
 -t <seconds> Timeout for items in the credential cache (in seconds)
 -v Display version information and available mechs
 -V Enable verbose logging
 -h Display this message.

saslauthd

46© Patrick Koetter & Ralf Hildebrandt, 2007

A classic...
The socket directory (run_path) is missing...

/usr/sbin/saslauthd -d -a shadow
saslauthd[20983] :main : num_procs : 5
saslauthd[20983] :main : mech_option: NULL
saslauthd[20983] :main : run_path : /var/run/saslauthd
saslauthd[20983] :main : auth_mech : shadow
saslauthd[20983] :main : could not chdir to: /var/run/saslauthd
saslauthd[20983] :main : chdir: No such file or directory
saslauthd[20983] :main : Check to make sure the directory exists and is
saslauthd[20983] :main : writeable by the user this process runs as.

Preparing saslauthd environment

47© Patrick Koetter & Ralf Hildebrandt, 2007

Create user test
useradd test
passwd test

Test using testsaslauthd
testsaslauthd -u test -p -test -s smtp

Testing using sample-server and sample-client
sample-server sends sample as application_name.

/usr/lib/sasl2/sample.conf
pwcheck_method: saslauthd
mech_list: PLAIN LOGIN

Start both applications in different terminals:

Terminal 1
sample-server -p 8000 -s rcmd -m PLAIN

Terminal 2
sample-client -p 8000 -s rcmd -m PLAIN localhost

Testing

48© Patrick Koetter & Ralf Hildebrandt, 2007

Configuring AUTH
There are two ways application specific configuration options can be given to Cyrus SASL:

– store them in a separate configuration file located in /usr/lib/sasl2.
Since 2.1.22 --with-configdir configure option made the location configurable.

– let server read configuration options from its own configuration file and pass them on
when it calls libsasl.

Postfix
Postfix uses a separate configuration file. It sends the (configurable) application_name
smtpd to libsasl by default.

/usr/lib/sasl2/smtpd.conf
pwcheck_method: saslauthd
mech_list: PLAIN LOGIN

Cyrus IMAP
Cyrus IMAP passes options to libsasl from its own configuration file.

/etc/imapd.conf
sasl_pwcheck_method: saslauthd
sasl_mech_list: PLAIN LOGIN

49© Patrick Koetter & Ralf Hildebrandt, 2007

sasldb authentication
Procedure
– Create sasldb2
– Test using sample-server and sample-client
– Configure AUTH

– in Postfix

– in Cyrus IMAP

50© Patrick Koetter & Ralf Hildebrandt, 2007

saslpasswd2
saslpasswd2 -h

This product includes software developed by Computing Services
at Carnegie Mellon University (http://www.cmu.edu/computing/).

saslpasswd2: usage: saslpasswd2 [-v] [-c [-p] [-n]] [-d] [-a appname] [-
f sasldb] [-u DOM] userid

 -p pipe mode -- no prompt, password read on stdin
 -c create -- ask mechs to create the account
 -d disable -- ask mechs to disable/delete the account
 -n no userPassword -- don‘t set plaintext userPassword
 property
 (only set mechanism-specific secrets)
 -f sasldb use given file as sasldb
 -a appname use appname as application name
 -u DOM use DOM for user domain
 -v print version numbers and exit

51© Patrick Koetter & Ralf Hildebrandt, 2007

Creating sasldb
saslpasswd2 -c -u example.com test
Password:
Again (for verification):

Listing sasldb content
sasldblistusers2 -h

This product includes software developed by Computing Services
at Carnegie Mellon University (http://www.cmu.edu/computing/).

sasldblistusers2: usage: sasldblistusers2 [-v] [[-f] sasldb]
 -f sasldb use given file as sasldb
 -v print version numbers and exit

sasldblistusers2
test@example.com: userPassword

52© Patrick Koetter & Ralf Hildebrandt, 2007

Testing
sample-server sends sample as application_name.

/usr/lib/sasl2/sample.conf
pwcheck_method: auxprop
auxprop_plugin: sasldb
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

Call both applications from separate terminals:

Terminal 1
sample-server -p 8000 -s rcmd -m PLAIN

Terminal 2
sample-client -p 8000 -s rcmd -m PLAIN localhost

Question
Do more secure mechanisms work?

53© Patrick Koetter & Ralf Hildebrandt, 2007

Configuring AUTH
Postfix
/usr/lib/sasl2/smtpd.conf
pwcheck_method: auxprop
auxprop_plugin: sasldb
mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

Cyrus IMAP
/etc/imapd.conf
sasl_pwcheck_method: auxprop
sasl_auxprop_plugin: sasldb
sasl_mech_list: PLAIN LOGIN CRAM-MD5 DIGEST-MD5

ldapdb-Plugin

55© Patrick Koetter & Ralf Hildebrandt, 2007

What makes ldapdb-plugin special?
ldapdb is the most complex plugin currently available from the Cyrus SASL source tree:
– ldapdb uses proxy authentication

The plugin must authenticate before it may authenticate the given data
– OpenLDAP expects SASL authentication

The plugin must be configured to do SASL authentication
– SASL authentication must be configured for OpenLDAP slapd server

OpenLDAP slapd must have been built to SASL authentication
– slapd must only offer mechanisms the ldapdb-SASL-client can handle
– OpenLDAP does not permit a proxy-user to do proxy-authentication by default

A global or a per-user policy must be configured
– OpenLDAP does not permit a proxy-user to search any path for proxy-authentication

A search path must be configured.

56© Patrick Koetter & Ralf Hildebrandt, 2007

Steps
OpenLDAP
– Directory Information Tree (DIT)
slapd
– basic configuration
– SASL authentication

– configure

– test
– Proxy-user

– define search permissions

– define search path

ldapdb-Plugin
– Understand parameters
– configure sample-server
– Test using sample-client and sample-server

Directory Information Tree

58© Patrick Koetter & Ralf Hildebrandt, 2007

Structure

ou=people

dc=example,dc=com

uid=proxyuser uid=other

ou=otherou=auth

uid=test

slapd

60© Patrick Koetter & Ralf Hildebrandt, 2007

Basic configuration
Schema
include /etc/openldap/schema/core.schema
include /etc/openldap/schema/cosine.schema
include /etc/openldap/schema/inetorgperson.schema
include /etc/openldap/schema/nis.schema

Database
database bdb
suffix „dc=example,dc=com“
rootdn „cn=Manager,dc=example,dc=com“
rootpw {CRYPT}Tv46kTM1pGuK.

61© Patrick Koetter & Ralf Hildebrandt, 2007

Importing Directory Information Tree
Importing DIT offline

„Your slapd(8) should not be running when you do this to ensure
consistency of the database.“

/etc/init.d/ldap stop
slapadd -v -c -b „dc=example,dc=com“ -l example.com.ldif

Tip
Fix user and group permissions...

62© Patrick Koetter & Ralf Hildebrandt, 2007

Configuring Authentication Mapping
Users, using SASL authentication to login to OpenLDAP, are treated internally within a spe-
cial context:

The internal view is follows either this „authentication request DN“ pattern:

 uid=<username>,cn=<realm>,cn=<mechanism>,cn=auth

or this one:

 uid=<username>,cn=<mechanism>,cn=auth

Neither of the both patterns match the DN of the proxy-user!

An authentication mapping matches the authentication request DN against the proxy-user
DN pattern:

authz-regexp
 uid=(.*),cn=.*,cn=auth
 ldap:///dc=example,dc=com??sub?(&(objectclass=inetOrgPerson)(mail=$1))

Important
– More than one mapping may be configured
– First match wins!

63© Patrick Koetter & Ralf Hildebrandt, 2007

Testing Authentication Mapping
– Use ldapwhoami as proxy-user to login to OpenLDAP.
– Switch into role of user requesting authentication
– Show identity

ldapwhoami -U proxyuser -X u:test@example.com -Y digest-md5

SASL/DIGEST-MD5 authentication started
Please enter your password: <proxyuser-Passwort>
SASL username: u:test@example.com
SASL SSF: 128
SASL installing layers
dn:cn=test,ou=people,dc=example,dc=com
Result: Success (0)

Proxy-User

65© Patrick Koetter & Ralf Hildebrandt, 2007

An authenticated proxy-user is not not authorized by default to use other users‘ credentials.

– policy in slapd.conf configures authorization
– policy is set using authz-policy parameter

authz-policy parameter
Valid values (since OpenLDAP 2.3.x) are:

to
 DN specifies destinations where proxy-user may use credentials

from
 DN specifies a user permitted to act as proxy-user

any
 Either policy may be used

all
 Both policies must be given

Proxy-Authentication Policy

66© Patrick Koetter & Ralf Hildebrandt, 2007

Authorizing the Proxy-User
authz-policy parameter settings control which attribute must be added to user objects.

Using „to“ as authz-policy
– Add authzTo attribute to proxy-user object
– authzTo attribute configures a LDAP search down the branch(es) where Proxy-User is

authorized to authenticate.

Example
authzTo: ldap:///ou=people,dc=example,dc=com??sub? \
 (&(objectclass=inetOrgPerson)(mail=*))

Using „from“ as authz-policy
– A user adds authzFrom attribute to its object, if it wants to authorize the proxy-user.
– The attribute defines the DN of the proxy-user that should be allowed to authenticate.

Example
authzFrom: dn.exact:uid=proxyuser,ou=auth,dc=example,dc=com

Configuring ldapdb

68© Patrick Koetter & Ralf Hildebrandt, 2007

ldapdb parameters
auxprop_plugin: ldapdb

The name of the LDAPDB-auxprop-plugin is ldapdb.
ldapdb_uri

Specifies one ore more URIs (List), the plugin should use as authentication backend. Ser-
ver may offer unencrypted (ldap://) or encrypted (ldaps://) connections.

ldapdb_id
Proxy-user username

ldapdb_pw
Proxy-user password in plaintext

ldapdb_mech
Specifies the mechanism the plugin should use when it logs into the LDAP server.

ldapdb_rc
Specifies a path to a configuration file where options for the ldapdb-LDAP-client would be
stored. Such options could be paths to TLS certificates...

ldapdb_starttls
Specifies TLS requirement level („try“ or „demand“).

Testing ldapdb

70© Patrick Koetter & Ralf Hildebrandt, 2007

/usr/lib/sasl2/sample.conf
log_level: 7
pwcheck_method: auxprop
auxprop_plugin: ldapdb
mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
ldapdb_uri: ldap://localhost
ldapdb_id: proxyuser
ldapdb_pw: proxy_secret
ldapdb_mech: DIGEST-MD5

Both applications are run from different terminals:

Terminal 1
sample-server -p 8000 -s rcmd -m PLAIN

Terminal 2
sample-client -p 8000 -s rcmd -m PLAIN localhost

Sample Configuration

Postfix

72© Patrick Koetter & Ralf Hildebrandt, 2007

Configuration
/usr/lib/sasl2/smtpd.conf
log_level: 7
pwcheck_method: auxprop
auxprop_plugin: ldapdb
mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
ldapdb_uri: ldap://localhost
ldapdb_id: proxyuser
ldapdb_pw: proxy_secret
ldapdb_mech: DIGEST-MD5

Cyrus IMAP

74© Patrick Koetter & Ralf Hildebrandt, 2007

Configuration
/etc/imapd.conf
sasl_log_level: 7
sasl_pwcheck_method: auxprop
sasl_auxprop_plugin: ldapdb
sasl_mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
sasl_ldapdb_uri: ldap://localhost
sasl_ldapdb_id: proxyuser
sasl_ldapdb_pw: proxy_secret
sasl_ldapdb_mech: DIGEST-MD5

Security Considerations

76© Patrick Koetter & Ralf Hildebrandt, 2007

Potential attacks
Network communication
Two areas where network communication may be eavesdropped:

– From client-application to server-application
Use TLS to protect plaintext-mechanisms!

– From server-application to LDAP server
Use secure mechanisms only

Credentials
Two areas where credentials can be eavesdropped:

– Client-application
Protection depends on OS and client

– Server-application (ldapdb-plugin)
Use TLS client certificate for ldapdb-plugin instead of a password!

77© Patrick Koetter & Ralf Hildebrandt, 2007

Certification Authority
Locations vary from distribution to distribution...

Create CA
Use CA(.pl)-script to create CA

./CA -newca

We need certificates for OpenLDAP server and ldapdb-plugin.

Important for proxy-user certificate
DN in proxy-user certificate must match exactly its DN in the directory!

Create request and key in one run
openssl req -new -nodes -keyout slapd_key.pem -out slapd_key.pem \
 -days 365

Sign certificate
openssl ca -policy policy_anything -out slapd_cert.pem \
 -infiles slapd_key.pem

78© Patrick Koetter & Ralf Hildebrandt, 2007

Configuring slapd-Server
CA certificate, private key and public server certificate must be specified in slapd.conf.

TLSCACertificateFile /etc/pki/CA/cacert.pem
TLSCertificateFile /etc/openldap/cacerts/slapd_cert.pem
TLSCertificateKeyFile /etc/openldap/cacerts/slapd_key.pem

Demand TLS while you test!

TLSVerifyClient demand

79© Patrick Koetter & Ralf Hildebrandt, 2007

Configuring ldapdb-Client
/usr/lib/sasl2/smtpd.conf
log_level: 7
pwcheck_method: auxprop
auxprop_plugin: ldapdb
mech_list: PLAIN LOGIN DIGEST-MD5 CRAM-MD5
ldapdb_uri: ldap://localhost
ldapdb_id: proxyuser
ldapdb_mech: EXTERNAL
ldapdb_starttls: demand
ldapdb_rc: /usr/lib/sasl2/ldaprc

/usr/lib/sasl2/ldaprc
TLS_CERT /usr/lib/sasl2/ma_cert.pem
TLS_KEY /usr/lib/sasl2/ma_key.pem
TLS_CACERT /etc/pki/CA/cacert.pem
TLS_REQCERT demand

Questions?

81© Patrick Koetter & Ralf Hildebrandt, 2007

Patrick Koetter
state of mind

http://www.state-of-mind.de
patrick.koetter@state-of-mind.de

Ralf Hildebrandt
T-Systems

http://www.arschkrebs.de
ralf.hildebrandt@charite.de

Speakers

http://www.state-of-mind.de
http://www.state-of-mind.de
http://www.arschkrebs.de

	Surviving Cyrus SASL
	The Goal
	Architecture
	Components
	Protocols
	Areas of Authentication

	Cyrus SASL
	What is Cyrus SASL?
	How Cyrus SASL works
	libsasl in Client-Application
	libsasl in Server-Application
	SASL-Terms used in authentication
	Authentication Interface
	Mechanisms
	Plaintext-mechanisms
	PLAIN
	LOGIN

	Shared-Secret-mechanisms
	External-mechanisms
	Ticket-mechanisms

	Password Verification Service
	pwcheck
	saslauthd

	Auxilliary Property Plugins
	sasldb
	sql
	ldapdb

	Configuration
	What needs to be configured?
	Parameters
	Generic Parameters
	Method-spezific Parameters

	Testing
	Tools to test
	testsaslauthd
	client - server

	Practice
	shadow authentication
	saslauthd
	Preparing saslauthd environment

	Testing
	Configuring AUTH

	sasldb authentication
	saslpasswd2
	Creating sasldb
	Testing
	Configuring AUTH

	ldapdb-Plugin
	What makes ldapdb-plugin special?
	Directory Information Tree
	slapd
	Basic configuration
	Importing Directory Information Tree
	Configuring Authentication Mapping

	Proxy-User
	Proxy-Authentication Policy
	Authorizing the Proxy-User

	Configuring ldapdb
	Testing ldapdb
	Postfix
	Cyrus IMAP
	Security Considerations
	Potential attacks
	Certification Authority
	Configuring slapd-Server
	Configuring ldapdb-Client

	Speakers

